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CO Hydrogenation Reactions over Titania-Supported Nickel 

In a recent paper we reported the unusual 
catalytic behavior of titania-supported 
nickel in the CO hydrogenation reaction 
(I). The two outstanding features of this 
catalyst, relative to conventional supported 
nickel catalysts, were a much higher 
specific activity and a shift in selectivity 
toward the production of higher molecular 
weight paraffins. Because the behavior of 
Ni/TiOz was distinctly different from typi- 
cal nickel methanation catalysts, further 
studies were conducted to better define the 
alteration of catalytic properties which was 
attributed to metal-support interaction. In 
addition to measuring kinetic parameters 
for methanation and total CO conversion, 
the reproducibility of the unusual catalytic 
behavior using a different titania produced 
by Degussa was determined. The Cab-O- 
Ti, used in earlier work, is no longer com- 
mercially available; therefore it was impor- 
tant to determine if a readily available 
material exhibited properties similar to 
Cab-0-Ti . 

The TiOz supports used in this study 
were obtained from two sources: Cab-0-Ti 
(COT) from Cabot Corporation and P-25 
titania from the Degussa Company. Both 
samples were prepared by the flame hydro- 
lysis of TiCl, and have very similar physical 
properties which have been tabulated else- 
where (2). The Ni/TiOl catalysts were pre- 
pared by the incipient wetness technique 
using reagent grade Ni(NO,), * 6H,O ob- 
tained from Matheson, Coleman, and Bell, 
Inc. (I). After impregnation, the samples 
were dried in air for 16 hr at 1 IO-120°C. The 
gases used and the purification steps em- 
ployed have been described previously (I). 
One additional gas mixture with a H&O 
ratio of 1, premixed and analyzed by the 
Matheson Company, was used in this 
study. To remove any carbonyls which may 
have been present, this mixture was passed 

through a molecular sieve trap heated at 
80°C before it entered the stainless-steel 
reactor. Details of the adsorption appa- 
ratus, pretreatment procedure, and reactor 
systems have been given previously (I, 3). 

Chemisorption measurements were con- 
ducted on samples of 1.5% Ni/P-25 and 
10% Ni/P-25 catalysts which had been used 
for reactor studies. On the former catalyst, 
ratios of CO/Ni = 0.32 and H/Ni = 0.094 
were obtained, and on the latter catalyst 
ratios of CO/Ni = 0.15 and H/Ni = 0.079 
were measured. As reported for the 
Ni/COT catalysts (I), CO uptakes are no- 
ticeably larger than H, uptakes. In the 
absence of carbonyl formation, typical 
nickel catalysts usually exhibit COfadj/Hcad, 
ratios near unity (4): however, titania in- 
hibits carbonyl formation (I); thus the high 
ratios observed for the titania-supported 
nickel catalysts do not seem to be attribut- 
able to this factor. Calculated average crys- 
tallite sizes based on CO or Hz uptakes 
were significantly smaller than those deter- 
mined from diffraction measurements indic- 
ative of a suppression of Hz and CO chemi- 
sorption as a result of metal-support 
interaction (I). 

Turnover frequencies and activation en- 
ergies for the methanation reaction and for 
total CO conversion to hydrocarbons are 
given in Table 1. Over the 1.5% Ni/COT 
catalyst, the partial pressure dependencies 
on hydrogen and CO were 0.85 + 0.10 and 
-0.33 5 0.06, respectively. These values 
agree closely with those determined for a 
5% Ni/A1,03 catalyst (3). The inhibition of 
Hz chemisorption with titania-supported 
metals presents a problem for the determi- 
nation of turnover frequencies. As dis- 
cussed in earlier work (I), this difficulty 
was addressed by determining the possible 
range of specific activities by calculating 
maximum turnover frequencies on the basis 
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TABLE 1 

Kinetic Behavior of Titania-Supported Nickel” 

Catalyst Turnover frequency Activation energy 

NCHl (set-’ x 103) Nco (see-’ x 103) E a 
k.l m:le-’ 

&Cl 
kJ mole-’ 

b c b c 

1.5% Ni/COT 231 528 500 1140 115 111 
1.5% Ni/COTd 7.4 16 
10% Ni/COT 1% 305 1610 2500 114 132 
10% Ni/COTd 11 90 

1.5% Ni/P-25 
1.5% Ni/P-25d 
10% Ni/P-25 
10% Ni/P-2Sd 

- 140 
13 

- 180 
14 

- 430 113 116 
41 

- 630 136 116 
50 

a P = 101 kPa, H&O = 3, T = 275°C. 
* Based on H2 chemisorption on fresh catalyst. 
c Based on HZ chemisorption on used catalyst. 
d Based on the assumption of a fraction exposed = 1. 

of Hz chemisorption to count metal sites, 
while minimum values were calculated by 
assuming a fraction exposed equal to 1. The 
latter is clearly an overestimate of nickel 
surface area with 10% Ni/TiOz for which 
the X-ray diffraction pattern showed 
reflections due to nickel crystallites. All 
calculated turnover frequencies are shown 
in Table 1. Even the minimum estimates for 
Nco values over Ni/COT are comparable to 
or greater than those measured on typical 
nickel catalysts ( I ). 

Curtailment of the commercial produc- 
tion of Cab-0-Ti led to the use of P-25 
titania available from Degussa. Although 
some variations were found, the higher 
activity and enhanced formation of longer- 

chain n-paraffins obtained with COT titania 
were reproducible using P-25 titania (Ta- 
bles 1 and 2). In fact, the enhanced produc- 
tion of higher molecular weight paraffins 
reported earlier for 10% Ni/COT (I) was 
even more pronounced with 10% Ni/P-25, 
as shown in Table 2. Under identical condi- 
tions, methane formation was suppressed 
to 15 wt% in some cases and C, hydrocar- 
bons were easily detectable. Figure 1 
shows the product weight fractions for 
three different runs, with two runs on 10% 
Ni/COT indicating the influence of temper- 
ature on the product distribution. When the 
reaction temperature is increased from 473 
to 515 K, the relative amount of methane 
formed does not increase, but the maxi- 

TABLE 2 

Comparison of 10% Ni/COT and 10% Ni/P-2Y 

Catalyst CO conversion 
(%) 

G 

10% Ni/COT 4.6 51.3 
10% Ni/P-25 5.5 42.5 

a T = 2Oo”C, H&O = 3, P = 101 kPa. 

G 

14.7 
13.3 

Product distribution (mole%) 

CL3 G G 

7.7 10.5 8.6 
10.9 8.8 10.3 

G G+ 

4.9 2.3 
8.0 6.2 
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FIG. I. Product distributions over 10% Ni/TiO, catalysts at P = 101 kPa and Hz/CO = 3: (A), 
COT, 473 K, 4.6% conversion; (Cl), COT, 515 K, 23.8% conversion; (01, P-25, 479 K, 9.6% 
conversion. 

mum in the hydrocarbon distribution shifts 
from pentane to propane. The two runs at 
473 (COT) and 479 K (P-25) show that the 
P-25 titania was more effective than COT in 
promoting chain-growth reactions and that 
the maximum was shifted to hexane over P- 
25 titania. 

An intriguing aspect of the titania-sup- 
ported nickel catalysts is that the enhanced 
chain-growth reaction does not appear to 
be adequately described by the simple po- 

lymerization models which have been ap- 
plied to normal hydrocarbon products for 
many Fischer-Tropsch catalysts (5-9). If 
the chain-growth process conforms to a 
“normal” or “most probable distribution” 
(9), a plot of In mole fraction (or wt%/ 
C#) versus carbon number is linear. 
Based on limited available data, it appears 
that nickel on conventional supports such 
as A&O3 or graphite produces a “normal 
distr?Wion” except for methane. This is 
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illustrated in Fig. 2. The high values for 
methane in the “normal distribution” plots 
are not unusual since many Fischer- 
Tropsch catalysts exhibit this characteris- 
tic (9, IO). 

The data in Table 2 for Ni/TiO, do not 
give a linear “normal distribution” plot as 
illustrated in Fig. 3. This is evidence that 
the chain-growth process is modified with 
Ni/TiO,. Kibby and Kobylinski have re- 
cently shown that modified versions of the 

chain growth models can lead to product 
distributions which are significantly differ- 
ent from those expected for a “normal 
distribution” (10). These modifications al- 
low for cracking reactions, chain initiation 
and propagation by ethylene, and variation 
in propagation rate with chain length. 
Cracking reactions can account for meth- 
ane production greater than predicted by 
the “normal distribution” whereas reac- 
tions of ethylene can explain the lower than 
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FIG. 2. “Normal distribution” plots of product distributions for supported nickel catalysts, P = 101 
kPa, H&O = 3. Catalysts are described in reference 4. 
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FIG. 3. “Normal distribution” plot ofproduct distributions over 10% Ni/TiO, at 200°C; P = 101 kPa 
and H&O = 3: (01, COT; (01, P-25. 

expected C2 fractions which are frequently 
found (9, II). Propagation rates which are 
dependent on chain length can result in 
sharp peaks in the weight fraction distribu- 
tion at particular carbon numbers. The pat- 
terns of product distribution of Ni/TiOt 
shown in Fig. 1 are very similar to patterns 
predicted by Kibby and Kobylinski for 
chain-length dependent propagation rates 
(10). Applying this interpretation to 
Ni/TiOz, a significant decrease in propaga- 
tion rates for C,, species at the higher 
temperature and C,, species at the lower 
temperature, relative to other carbon num- 
bers, is indicated. 

The detailed physical and chemical na- 
ture of the metal-support effect in Ni/TiOz 
catalysts which leads to the modification of 
catalytic properties is not known at the 

present time; however, one possibility may 
be ruled out. It does not appear likely that 
the TiO, surface itself becomes catalyti- 
cally active to create a dual functional 
catalyst. This conclusion is based on the 
findings that titania alone is not active and a 
physical mixture of nickel powder and tita- 
nia behaves like nickel powder alone. In 
addition, other group VIII metals on titania 
do not exhibit product distributions indica- 
tive of enhanced chain growth (12). 

A number of reaction pathways have 
been proposed to account for the formation 
of higher molecular weight hydrocarbons 
from CO and H, (13), however, a single 
definitive mechanism has yet to be estab- 
lished. It is interesting to note, though, that 
both chemisorption measurements (1) and 
ir studies (14) indicate that the CO-M 
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chemisorption bond is weakened for tita- 2. 
nia-supported nickel relative to supports 
such as A1203 and SiOZ. This would be i: 
expected to reduce CO dissociation and 5, 
decrease the concentration of reactive sur- 6, 
face carbon (15). Van Barneveld and Ponec 
have proposed that both molecularly ad- 7. 
sorbed CO and reactive surface carbon are 
required for chain growth (16). The selec- 8. 

tivity data for Ni/TiOz when considered 9, 
together with the chemisorption and ir data 
provide support for the proposal of van 10. 
Barneveld and Ponec. 

In summary, the results provided by this ii: 
study show that the support can alter the 
catalytic behavior of certain metals in 13. 

CO/H, reactions. In addition, selectivities 
other than those dictated by simple poly- 14. 

merization kinetics appear to result from ,5 
perturbations due to metal-support inter- ’ 
actions. Although the nature of the 16. 
interaction between nickel and titania is not 
well understood at this time, it is not unique 17. 

to nickel. Titania-supported ruthenium also 
exhibits significantly different catalytic and 
adsorptive properties (17). Additional fun- 
damental studies are required to better 
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